129 research outputs found

    UNDERSTANDING THE ROLE OF MOULD SLAG AND SLAG FILM IN SURFACE QUALITY OF CONTINUOUSLY CAST SEMIS

    Get PDF
    It is accepted that the majority of surface defects in the continuous casting process originate at, or within 25mm of, the meniscus in the mould. Whether the defects propagate into cracks is dependent on the heat transferdown the remainder of the mould and events and conditions at and below mould exit. One major influenceat the meniscus and down the mould is the performance of the mould flux in terms of its melting, lubrication,solidification and transformations. The formation of slag film between the solidifying shell and the coppermould plate is critical in terms of lubrication and heat transfer, both of which are influenced by its thicknessand degree of crystallisation. The films are usually only two to four millimetres thick, but the temperaturedifference between one face and the other can be 950 °C. Varying the glass/crystalline ratio of the solid partof this film, has a significant and important effect on lubrication, heat transfer and thereby surface quality.This paper describes current and recent work to understand the role of mould slag and slag film in the surfacequality of continuously cast semis within Corus UK

    Development and validation of a mathematical equation to estimate glomerular filtration rate in cirrhosis: The rfh cirrhosis Gfr

    Get PDF
    Current expressions based on serum creatinine concentration overestimate kidney function in cirrhosis leading to significant differences between "true" and calculated glomerular filtration rate (GFR). We compared the performance of MDRD-4, MDRD-6 and CKD-EPI with "true" GFR and the impact of this difference on MELD calculation. We subsequently developed and validated a GFR equation specifically for cirrhosis and compared the performance of the new derived formula with existing GFR formulas. We included 469 consecutive patients who had a transplant assessment between 2011 and 2014. "True" GFR (mGFR) was measured using plasma isotope clearance according to a technique validated in patients with ascites. A corrected creatinine was derived from the mGFR after application of the MDRD formula. Subsequently, a corrected MELD was calculated and was compared with the conventionally calculated MELD. Stepwise multiple linear regression was used to derive a GFR equation. This was compared with the measured GFR in independent external and internal validation sets of 82 and 174 patients with cirrhosis respectively. A difference>20 ml/min/1.73m(2) between existing formulae and mGFR was observed in 226 (48.2%) patients. The corrected MELD score was ≄3 points higher in 177 (37.7%) patients. The predicted equation derived (R(2) =74·6%) was: GFR=45·9x(creatinine(-0) ·(836) )x(urea(-0) ·(229) )x(INR(-0) ·(113) )x(age(0) ·(129) )x(sodium(0) ·(972) )x1·236(if male)x0·92(if moderate/severe ascites). The model was a good fit and showed the greatest accuracy compared to that of existing formulae. CONCLUSION: We developed and validated a new accurate model for GFR assessment in cirrhosis, the RFH cirrhosis GFR, using readily available variables. This remains to be tested and incorporated in prognostic scores in patients with cirrhosis

    Extracardiac 18F-florbetapir imaging in patients with systemic amyloidosis: more than hearts and minds

    Get PDF
    PURPOSE: 18F-Florbetapir has been reported to show cardiac uptake in patients with systemic light-chain amyloidosis (AL). This study systematically assessed uptake of 18F-florbetapir in patients with proven systemic amyloidosis at sites outside the heart. METHODS: Seventeen patients with proven cardiac amyloidosis underwent 18F-florbetapir PET/CT imaging, 15 with AL and 2 with transthyretin amyloidosis (ATTR). Three patients had repeat scans. All patients had protocolized assessment at the UK National Amyloidosis Centre including imaging with 123I-serum amyloid P component (SAP). 18F-Florbetapir images were assessed for areas of increased tracer accumulation and time-uptake curves in terms of standardized uptake values (SUVmean) were produced. RESULTS: All 17 patients showed 18F-florbetapir uptake at one or more extracardiac sites. Uptake was seen in the spleen in 6 patients (35%; 6 of 9, 67%, with splenic involvement on 123I-SAP scintigraphy), in the fat in 11 (65%), in the tongue in 8 (47%), in the parotids in 8 (47%), in the masticatory muscles in 7 (41%), in the lungs in 3 (18%), and in the kidney in 2 (12%) on the late half-body images. The 18F-florbetapir spleen retention index (SRI) was calculated. SRI >0.045 had 100% sensitivity/sensitivity (in relation to 123I-SAP splenic uptake, the current standard) in detecting splenic amyloid on dynamic imaging and a sensitivity of 66.7% and a specificity of 100% on the late half-body images. Intense lung uptake was seen in three patients, one of whom had lung interstitial infiltration suggestive of amyloid deposition on previous high-resolution CT. Repeat imaging showed a stable appearance in all three patients suggesting no early impact of treatment response. CONCLUSION: 18F-Florbetapir PET/CT is a promising tool for the detection of extracardiac sites of amyloid deposition. The combination of uptake in the heart and uptake in the spleen on 18F-florbetapir PET/CT, a hallmark of AL, suggests that this tracer holds promise as a screening tool for AL

    Endurance-Type Exercise Increases Bulk and Individual Mitochondrial Protein Synthesis Rates in Rats.

    Get PDF
    Physical activity increases muscle protein synthesis rates. However, the impact of exercise on the coordinated up- and/or downregulation of individual protein synthesis rates in skeletal muscle tissue remains unclear. The authors assessed the impact of exercise on mixed muscle, myofibrillar, and mitochondrial protein synthesis rates as well as individual protein synthesis rates in vivo in rats. Adult Lewis rats either remained sedentary (n = 3) or had access to a running wheel (n = 3) for the last 2 weeks of a 3-week experimental period. Deuterated water was injected and subsequently administered in drinking water over the experimental period. Blood and soleus muscle were collected and used to assess bulk mixed muscle, myofibrillar, and mitochondrial protein synthesis rates using gas chromatography-mass spectrometry and individual muscle protein synthesis rates using liquid chromatography-mass spectrometry (i.e., dynamic proteomic profiling). Wheel running resulted in greater myofibrillar (3.94 ± 0.26 vs. 3.03 ± 0.15%/day; p < .01) and mitochondrial (4.64 ± 0.24 vs. 3.97 ± 0.26%/day; p < .05), but not mixed muscle (2.64 ± 0.96 vs. 2.38 ± 0.62%/day; p = .71) protein synthesis rates, when compared with the sedentary condition. Exercise impacted the synthesis rates of 80 proteins, with the difference from the sedentary condition ranging between -64% and +420%. Significantly greater synthesis rates were detected for F1-ATP synthase, ATP synthase subunit alpha, hemoglobin, myosin light chain-6, and synaptopodin-2 (p < .05). The skeletal muscle protein adaptive response to endurance-type exercise involves upregulation of mitochondrial protein synthesis rates, but it is highly coordinated as reflected by the up- and downregulation of various individual proteins across different bulk subcellular protein fractions

    Proteomic analysis reveals perturbed energy metabolism and elevated oxidative stress in hearts of rats with inborn low aerobic capacity

    Full text link
    Selection on running capacity has created rat phenotypes of high‐capacity runners (HCRs) that have enhanced cardiac function and low‐capacity runners (LCRs) that exhibit risk factors of metabolic syndrome. We analysed hearts of HCRs and LCRs from generation 22 of selection using DIGE and identified proteins from MS database searches. The running capacity of HCRs was six‐fold greater than LCRs. DIGE resolved 957 spots and proteins were unambiguously identified in 369 spots. Protein expression profiling detected 67 statistically significant ( p <0.05; false discovery rate <10%, calculated using q ‐values) differences between HCRs and LCRs. Hearts of HCR rats exhibited robust increases in the abundance of each enzyme of the ÎČ‐oxidation pathway. In contrast, LCR hearts were characterised by the modulation of enzymes associated with ketone body or amino acid metabolism. LCRs also exhibited enhanced expression of antioxidant enzymes such as catalase and greater phosphorylation of α B‐crystallin at serine 59, which is a common point of convergence in cardiac stress signalling. Thus, proteomic analysis revealed selection on low running capacity is associated with perturbations in cardiac energy metabolism and provided the first evidence that the LCR cardiac proteome is exposed to greater oxidative stress.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86916/1/3369_ftp.pd

    Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.

    Get PDF
    It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise

    Effects of an active warm-up on variation in bench press and back squat (upper and lower body measures).

    Get PDF
    The present study investigated the magnitude of diurnal variation in back squat and bench press using the MuscleLab linear encoder over three different loads and assessed the benefit of an active warm-up to establish whether diurnal variation could be negated. Ten resistance-trained males underwent (mean ± SD: age 21.0 ± 1.3 years, height 1.77 ± 0.06 m, and body mass 82.8 ± 14.9 kg) three sessions. These included control morning (M, 07:30 h) and evening (E, 17:30 h) sessions (5-min standardized warm-up at 150 W, on a cycle ergometer), and one further session consisting of an extended active warm-up morning trial (ME, 07:30 h) until rectal temperature (Trec) reached previously recorded resting evening levels (at 150 W, on a cycle ergometer). All sessions included handgrip, followed by a defined program of bench press (at 20, 40, and 60 kg) and back squat (at 30, 50, and 70 kg) exercises. A linear encoder was attached to an Olympic bar used for the exercises and average force (AF), peak velocity (PV), and time to peak velocity (tPV) were measured (MuscleLab software; MuscleLab Technology, Langesund, Norway) during the concentric phase of the movements. Values for Trec were higher in the E session compared to values in the M session (Δ0.53 °C, P  0.05) to increase from M to E levels. Therefore, MuscleLab linear encoder could detect meaningful differences between the morning and evening for all variables. However, the diurnal variation in bench press and back squat (measures of lower and upper body force and power output) is not explained by time-of-day oscillations in Trec

    DPD Quantification in Cardiac Amyloidosis A Novel Imaging Biomarker

    Get PDF
    OBJECTIVES: To assess whether single-photon emission computed tomography (SPECT/CT) quantification of bone scintigraphy would improve diagnostic accuracy and offer a means of quantifying amyloid burden. BACKGROUND: Transthyretin-related cardiac amyloidosis is common and can be diagnosed noninvasively using bone scintigraphy; interpretation, however, relies on planar images. SPECT/CT imaging offers 3-dimensional visualization. METHODS: This was a single-center, retrospective analysis of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) scans reported using the Perugini grading system (0 = negative; 1 to 3 = increasingly positive). Conventional planar quantification techniques (heart/contralateral lung, and heart/whole-body retention ratios) were performed. Heart, adjacent vertebra, paraspinal muscle and liver peak standardized uptake values (SUVpeak) were recorded from SPECT/CT acquisitions. An SUV retention index was also calculated: (cardiac SUVpeak/vertebral SUVpeak) × paraspinal muscle SUVpeak. In a subgroup of patients, SPECT/CT quantification was compared with myocardial extracellular volume quantification by CT imaging (ECVCT). RESULTS: A total of 100 DPD scans were analyzed (patient age 84 ± 9 years; 52% male): 40 were Perugini grade 0, 12 were grade 1, 41 were grade 2, and 7 were grade 3. Cardiac SUVpeak increased from grade 0 to grade 2; however, it plateaued between grades 2 and 3 (p < 0.001). Paraspinal muscle SUVpeak increased with grade (p < 0.001), whereas vertebral SUVpeak decreased (p < 0.001). The composite parameter of SUV retention index overcame the plateauing of the cardiac SUVpeak and increased across all grades (p < 0.001). Cardiac SUVpeak correlated well (r2 = 0.73; p < 0.001) with ECVCT. Both the cardiac SUVpeak and SUV retention index had excellent diagnostic accuracy (area under the curve [AUC]: 0.999). The heart to contralateral lung ratio performed the best of the planar quantification techniques (AUC: 0.987). CONCLUSIONS: SPECT/CT quantification in DPD scintigraphy is possible and outperforms planar quantification techniques. Differentiation of Perugini grade 2 or 3 is confounded by soft tissue uptake, which can be overcome by a composite SUV retention index. This index can help in the diagnosis of cardiac amyloidosis and may offer a means of monitoring response to therapy

    The challenge of enterprise/innovation: a case study of a modern university

    Get PDF
    In the prevailing economic and political climate for Higher Education a greater emphasis has been placed on diversifying the funding base. The present study was undertaken between 2012 and 2014 and addressed the implementation of an approach to the transformation of one academic school in a medium-sized modern university in Wales to a more engaged enterprise culture. A multimethod investigation included a bi-lingual (English and Welsh) online survey of academic staff and yielded a 71% response rate (n = 45). The findings informed a series of in-depth interviews (n = 24) with a representative sample of those involved in enterprise work (support staff, managers, senior managers), and those who were not. The results provided the platform for the ‘S4E model’ for effective engagement with enterprise: (1) Strategic significance for Enterprise, (2) Support for Enterprise, (3) Synergy for Enterprise, and (4) Success for Enterprise. The outcomes of the research and the recommendations from it have potential to inform practice in other academic schools within the university and, in a wider context, within other Schools of Education regionally, nationally and internationally. Its original empirical exploration of enterprise within education studies is a significant contribution to that body of knowledge

    Controlling rectal and muscle temperatures: Can we offset diurnal variation in repeated sprint performance?

    Get PDF
    The present study investigated whether increasing morning rectal temperatures (Trec) to resting.evening levels, or decreasing evening Trec or muscle (Tm) temperatures to morning values, would influence repeated sprint (RS) performance in a causal manner. Twelve trained males underwent five sessions [age (mean ± SD) 21.8 ± 2.6 yr, peak oxygen uptake ( peak) 60.6 ± 4.6 mL kg min−1, stature 1.78 ± 0.07 m and body mass 76.0 ± 6.3 kg]. These included a control morning (M, 07:30 h) and evening (E, 17:30 h) session (5-min warm-up), and three further sessions consisting of a warm-up morning trial (ME, on a motorised treadmill) until Trec reached evening levels; and two cool-down evening trials (in 16–17°C water) until Trec (EMrec) or Tm (EMmuscle) values reached morning temperatures, respectively. All sessions included a 3 × 3-s task-specific warm-up followed by 10 × 3-s RS with 30-s recoveries performed on a non-motorised treadmill. Trec and Tm measurements were taken at the start of the protocol and following the warm-up or cool-down period. Values for Trec and Tm were higher in the evening compared to morning values (0.45°C and 0.57°C, P < 0.05). RS performance was lower in the M for distance covered (DC), average power (AP) and average velocity (AV) (9–10%, P < 0.05). Pre-cooling Trec and Tm in the evening reduced RS performance to levels observed in the morning (P < 0.05). However, an active warm-up resulted in no changes in morning RS performance. Diurnal variation in Trec and Tm is not wholly accountable for time-of-day oscillations in RS performance on a non-motorised treadmill; the exact mechanism(s) for a causal link between central temperature and human performance are still unclear and require more research
    • 

    corecore